Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Poult Sci ; 102(8): 102774, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37302324

RESUMO

This study investigated the effects of dietary isoleucine (Ile) on growth performance, intestinal expression of amino acid transporters, protein metabolism-related genes and intestinal microbiota in starter phase Chinese yellow-feathered chickens. Female Xinguang yellow-feathered chickens (n = 1,080, aged 1 d) were randomly distributed to 6 treatments, each with 6 replicates of 30 birds. Chickens were fed diets with 6 levels of total Ile (6.8, 7.6, 8.4, 9.2, 10.0, and 10.8 g/kg) for 30 d. The average daily gain and feed conversion ratio were improved with dietary Ile levels (P < 0.05). Plasma uric acid content and glutamic-oxalacetic transaminase activity were linearly and quadratically decreased with increasing dietary Ile inclusion (P < 0.05). Dietary Ile level had a linear (P < 0.05) or quadratic (P < 0.05) effect on the jejunal expression of ribosomal protein S6 kinase B1 and eukaryotic translation initiation factor 4E binding protein 1. The relative expression of jejunal 20S proteasome subunit C2 and ileal muscle ring finger-containing protein 1 decreased linearly (P < 0.05) and quadratically (P < 0.05) with increasing dietary Ile levels. Dietary Ile level had a linear (P = 0.069) or quadratic (P < 0.05) effect on the gene expression of solute carrier family 15 member 1 in jejunum and solute carrier family 7 member 1 in ileum. In addition, bacterial 16S rDNA full-length sequencing showed that dietary Ile increased the cecal abundances of the Firmicutes phylum, and Blautia, Lactobacillus, and unclassified_Lachnospiraceae genera, while decreased that of Proteobacteria, Alistipes, and Shigella. Dietary Ile levels affected growth performance and modulated gut microbiota in yellow-feathered chickens. The appropriate level of dietary Ile can upregulate the expression of intestinal protein synthesis-related protein kinase genes and concomitantly inhibit the expression of proteolysis-related cathepsin genes.


Assuntos
Galinhas , Microbioma Gastrointestinal , Animais , Feminino , Galinhas/fisiologia , Suplementos Nutricionais/análise , Isoleucina , Dieta/veterinária , Sistemas de Transporte de Aminoácidos/genética , Ração Animal/análise
2.
Poult Sci ; 102(3): 102477, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36680861

RESUMO

Our previous study demonstrated that the zinc (Zn) proteinate with moderate chelation strength (Zn-Prot M) enhanced the Zn absorption in the small intestine partially via increasing the expression of some Zn and amino acid transporters in the duodenum of broilers. However, it remains unknown whether the Zn-Prot M could also regulate the expression of related transporters in the jejunum and ileum of broilers in the above enhancement of Zn absorption. The present study was conducted to investigate the effect of the Zn-Prot M on the expression of related transporters in the jejunum and ileum of broilers compared to the Zn sulfate (ZnS). Zinc-deficient broilers (13-d-old) were fed with the Zn-unsupplemented basal diets (control) or the basal diets supplemented with 60 mg Zn/kg as ZnS or Zn-Prot M for 26 d. The results showed that in the jejunum, compared to the control, supplementation of the organic or inorganic Zn increased (P < 0.05) mRNA and protein expression of b0,+-type amino acid transporter (rBAT), Zn transporter 10 (ZnT10), and peptide-transporter 1 (PepT1) mRNA expression and Zn transporter 7 (ZnT7) protein expression on d 28, while y+L-type amino transporter 2 (y+LAT2) mRNA and protein expression, and protein expression of ZnT7 and ZnT10 on 28 d and zrt-irt-like protein 3 (ZIP3) and zrt-irt-like protein 5 (ZIP5) on d 39 were higher (P < 0.05) for Zn-Prot M than for ZnS. In the ileum, Zn addition regardless of Zn source up-regulated (P < 0.05) mRNA expression of Zn transporter 9 (ZnT9) and ZIP3, ZIP5, and y+LAT2 protein expression on d 28, and PepT1 mRNA and protein expression, ZIP3 and y+LAT2 mRNA expression and ZnT10 protein expression on d 39. Furthermore, Zn transporter 4 (ZnT4) and ZnT9 mRNA expression and Zn transporter 1 (ZnT1) protein expression on d 28, and y+LAT2 mRNA expression and ZnT10 and PepT1 protein expression on d 39 were higher (P < 0.05) for Zn-Prot M than for ZnS. It was concluded that the Zn-Prot M enhanced the expression of the ZnT1, ZnT4, ZnT9, ZnT10, ZIP3, ZIP5, y+LAT2, and PepT1 in the jejunum or ileum of broilers compared to the ZnS.


Assuntos
Galinhas , Jejuno , Compostos Organometálicos , Zinco , Animais , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Galinhas/genética , Galinhas/metabolismo , Íleo/metabolismo , Jejuno/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Zinco/metabolismo , Compostos Organometálicos/metabolismo
3.
Int J Biol Macromol ; 217: 330-344, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35839952

RESUMO

Tartary buckwheat (Fagopyrum tataricum L. Gaertn., TB) is an ancient minor crop and an important food source for humans to supplement nutrients such as flavonoids and essential amino acids. Amino acid transporters (AATs) play critical roles in plant growth and development through the transport of amino acids. In this study, 104 AATs were identified in TB genome and divided into 11 subfamilies by phylogenetic relationships. Tandem and segmental duplications promoted the expansion of FtAAT gene family, and the variations of gene sequence, protein structure and expression pattern were the main reasons for the functional differentiation of FtAATs. Based on RNA-seq and qRT-PCR, the expression patterns of FtAATs in different tissues and under different abiotic stresses were analyzed, and several candidate FtAATs that might affect grain development and response to abiotic stresses were identified, such as FtAAP12 and FtCAT7. Finally, combined with the previous studies, the expression patterns and phylogenetic relationships of AATs in multiple species, the functions of multiple high-confidence FtAAT genes were predicted, and the schematic diagram of FtAATs in TB was initially drawn. Overall, this work provided a framework for further functional analysis of FtAAT genes and important clues for the improvement of TB quality and stress resistance.


Assuntos
Fagopyrum , Sistemas de Transporte de Aminoácidos/genética , Fagopyrum/metabolismo , Regulação da Expressão Gênica de Plantas , Humanos , Filogenia , Proteínas de Plantas/metabolismo
4.
Nat Commun ; 13(1): 1151, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241668

RESUMO

Autism spectrum disorder (ASD), a group of neurodevelopmental disorders characterized by social communication deficits and stereotyped behaviors, may be associated with changes to the gut microbiota. However, how gut commensal bacteria modulate brain function in ASD remains unclear. Here, we used chromodomain helicase DNA-binding protein 8 (CHD8) haploinsufficient mice as a model of ASD to elucidate the pathways through which the host and gut microbiota interact with each other. We found that increased levels of amino acid transporters in the intestines of the mouse model of ASD contribute to the high level of serum glutamine and the increased excitation/inhibition (E/I) ratio in the brain. In addition, elevated α-defensin levels in the haploinsufficient mice resulted in dysregulation of the gut microbiota characterized by a reduced abundance of Bacteroides. Furthermore, supplementation with Bacteroides uniformis improved the ASD-like behaviors and restored the E/I ratio in the brain by decreasing intestinal amino acid transport and the serum glutamine levels. Our study demonstrates associations between changes in the gut microbiota and amino acid transporters, and ASD-like behavioral and electrophysiology phenotypes, in a mouse model.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Microbiota , Sistemas de Transporte de Aminoácidos/genética , Animais , Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Microbioma Gastrointestinal/genética , Glutamina , Camundongos
5.
Nutrients ; 15(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36615799

RESUMO

The intestine is a key organ for the absorption of amino acids. L-theanine (LTA) is a structural analog of glutamine and a characteristic non-protein amino acid found in tea (Camellia sinensis) that regulates lipid and protein metabolism. The present study explored the role of LTA in intestinal amino acid absorption, protein synthesis, and its mechanisms. Overall, our findings suggest that LTA supplementation not only affects serum alkaline phosphatase (AKP), total protein (TP), and urea nitrogen (BUN) levels, but it also upregulates the mRNA and protein expression of amino acid transporters (EAAT3, EAAT1, 4F2hc, y+LAT1, CAT1, ASCT2, and B0AT1), and activates the mTOR signaling pathway. The downstream S6 and S6K1 proteins are regulated, and the expression of amino acid transporters is regulated. These findings suggest that LTA increases intestinal AA absorption, promotes protein metabolism, and increases nitrogen utilization by upregulating AAT expression, activating the mTOR signaling pathway, and phosphorylating the mTOR downstream proteins S6 and S6K1.


Assuntos
Aminoácidos , Jejuno , Camundongos , Animais , Jejuno/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Transdução de Sinais , Duodeno/metabolismo , Nitrogênio/metabolismo
6.
Plant J ; 107(6): 1616-1630, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216173

RESUMO

Glutamine is a product of ammonium (NH4+ ) assimilation catalyzed by glutamine synthetase (GS) and glutamate synthase (GOGAT). The growth of NH4+ -preferring paddy rice (Oryza sativa L.) depends on root NH4+ assimilation and the subsequent root-to-shoot allocation of glutamine; however, little is known about the mechanism of glutamine storage in roots. Here, using transcriptome and reverse genetics analyses, we show that the rice amino acid transporter-like 6 (OsATL6) protein exports glutamine to the root vacuoles under NH4+ -replete conditions. OsATL6 was expressed, along with OsGS1;2 and OsNADH-GOGAT1, in wild-type (WT) roots fed with sufficient NH4 Cl, and was induced by glutamine treatment. We generated two independent Tos17 retrotransposon insertion mutants showing reduced OsATL6 expression to determine the function of OsATL6. Compared with segregants lacking the Tos17 insertion, the OsATL6 knock-down mutant seedlings exhibited lower root glutamine content but higher glutamine concentration in the xylem sap and greater shoot growth under NH4+ -replete conditions. The transient expression of monomeric red fluorescent protein-fused OsATL6 in onion epidermal cells confirmed the tonoplast localization of OsATL6. When OsATL6 was expressed in Xenopus laevis oocytes, glutamine efflux from the cell into the acidic bath solution increased. Under sufficient NH4+ supply, OsATL6 transiently accumulated in sclerenchyma and pericycle cells, which are located adjacent to the Casparian strip, thus obstructing the apoplastic solute path, and in vascular parenchyma cells of WT roots before the peak accumulation of GS1;2 and NADH-GOGAT1 occurred. These findings suggest that OsATL6 temporarily stores excess glutamine, produced by NH4+ assimilation, in root vacuoles before it can be translocated to the shoot.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Glutamina/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Amônia/metabolismo , Cloreto de Amônio/farmacologia , Animais , Feminino , Regulação da Expressão Gênica de Plantas , Homeostase , Mutação , Cebolas/citologia , Cebolas/genética , Oócitos/metabolismo , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Vacúolos/metabolismo , Xenopus laevis
7.
J Anim Physiol Anim Nutr (Berl) ; 105(1): 90-98, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32654243

RESUMO

Reducing crude protein and supplementation with synthetic amino acids in poultry nutrition is a recent trend to avoid wastage of protein and ammonia in production systems. Stress has been shown to impair intestinal barrier and increase inflammatory response. This study was performed on intestinal tissues of broiler chickens to understand the mechanism of stress induced by a synthetic glucocorticoid, dexamethasone (DEX) and the effect of supplementation of arginine, glutamine and glycine in reduced protein diets. Intestinal tissue samples from a previous study were utilized. Male Ross 308 chickens received a basal diet for the first seven days and then fed with crude protein that was reduced to 194 g/kg in grower experimental diets supplemented with glutamine, glycine and additional arginine at 10, 10 and 5 g/kg respectively. Half of the 96 individual birds were injected with DEX (0.5 mg/kg body weight) or saline on days 14, 16, 18 and 20 of age. mRNA expression for jejunum and ileum for amino acid transporters (y+LAT-1, Bo,+ AT, EAAT-3 and CAT-1), mechanistic genes (SGLT-1, mTOR, IAP and FABP-2) and pro-inflammatory genes (MUC-2, NF-κB, iNOS, IL-8 and IL-1ß) were analysed using real-time PCR. The results showed that DEX decreased y+ LAT1 in jejunum, Bo ,+ AT and EAAT-3 in ileum. Arginine increased CAT-1 in the jejunum and ileum under DEX treatment. Through an interaction, DEX reduced IAP in jejunum of glycine and arginine supplemented group and reduced mTOR in jejunum independently. DEX reduced MUC-2 and iNOS in jejunum and increased iNOS and IL8 in the ileum. Amino acid supplementation did not appear to ameliorate these effects; however, there were some positive effects of glycine on NF-κB and arginine through increased CAT-1. Mechanistic understanding of amino acid supplementation in broiler diets warrants further research particularly when dietary protein is reduced below the level tested in the present study.


Assuntos
Galinhas , Glutamina , Sistemas de Transporte de Aminoácidos/genética , Ração Animal/análise , Animais , Arginina , Dexametasona/farmacologia , Dieta/veterinária , Dieta com Restrição de Proteínas/veterinária , Suplementos Nutricionais , Glicina , Íleo , Jejuno , Masculino , Nutrientes
8.
J Anim Sci ; 98(11)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33047125

RESUMO

This study was conducted to test the hypothesis that supplemental dietary Arg to late-pregnant and lactating sows increases serum prolactin concentrations and mRNA abundance of SLC7A1, SLC7A2, and SLC6A14 in mammary parenchymal tissue. From day 108 of gestation and until day 21 of lactation, sows were fed a diet either supplemented with 0.10 g of l-Arg/kg body weight (BW) per day (n = 10, ARG) or 0.34 g of l-Glu/kg BW per day (n = 10, control). Litters were standardized to 10 piglets on day 1 of lactation and piglets were weighed on days 1, 7, 14, and 21 of lactation. Sow BW was recorded on day 108 of gestation and days 1, 10, and 21 of lactation. Lactation sow feed intake was recorded daily. Mammary parenchymal tissue was biopsied on day 5 of lactation to measure mRNA abundance SLC7A1, SLC7A2, and SLC6A14. On days 4 and 18 of lactation, blood samples were collected from sows at 2, 4, and 6 hr postfeeding to measure serum prolactin concentrations. Milk samples were collected on days 4, 10, and 18 of lactation to measure fat, lactose, urea N, and true protein concentrations. Sow BW, backfat, and feed intake over all sampling days did not differ between treatments. Piglet BW on d 1 tended to be greater for the ARG treatment than the control treatment (P = 0.12). Sow milk yield and composition (fat, protein, lactose, and urea N) and mammary mRNA abundance of candidate genes did not differ between the ARG and the control group. Compared to controls, serum prolactin concentrations tended to be greater (P = 0.08) in ARG sows on day 4 of lactation, and did not differ on day 18. Current findings show a potential beneficial effect of dietary supplementation with Arg to late-pregnant multiparous sows on BW of their piglets on day 1. Dietary Arg supplementation at a rate of 0.10 g/kg BW during late pregnancy and lactation tended to increase serum prolactin concentrations with no increase in mammary transcript abundance of SLC7A1, SLC7A2, and SLC6A14 in early lactation.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Arginina/farmacologia , Suplementos Nutricionais/análise , Leite/metabolismo , Prolactina/sangue , Suínos/fisiologia , Ração Animal/análise , Animais , Dieta/veterinária , Feminino , Lactação , Leite/química , Gravidez , RNA Mensageiro/genética
9.
Elife ; 92020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32744498

RESUMO

How cells adjust nutrient transport across their membranes is incompletely understood. Previously, we have shown that S. cerevisiae broadly re-configures the nutrient transporters at the plasma membrane in response to amino acid availability, through endocytosis of sugar- and amino acid transporters (AATs) (Müller et al., 2015). A genome-wide screen now revealed that the selective endocytosis of four AATs during starvation required the α-arrestin family protein Art2/Ecm21, an adaptor for the ubiquitin ligase Rsp5, and its induction through the general amino acid control pathway. Art2 uses a basic patch to recognize C-terminal acidic sorting motifs in AATs and thereby instructs Rsp5 to ubiquitinate proximal lysine residues. When amino acids are in excess, Rsp5 instead uses TORC1-activated Art1 to detect N-terminal acidic sorting motifs within the same AATs, which initiates exclusive substrate-induced endocytosis. Thus, amino acid excess or starvation activate complementary α-arrestin-Rsp5-complexes to control selective endocytosis and adapt nutrient acquisition.


Assuntos
Aminoácidos/metabolismo , Arrestina/metabolismo , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Arrestina/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complexos Ubiquitina-Proteína Ligase/genética , Ubiquitinação
10.
Biomolecules ; 10(9)2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32846873

RESUMO

Although structurally related, mitochondrial carrier family (MCF) proteins catalyze the specific transport of a range of diverse substrates including nucleotides, amino acids, dicarboxylates, tricarboxylates, cofactors, vitamins, phosphate and H+. Despite their name, they do not, however, always localize to the mitochondria, with plasma membrane, peroxisomal, chloroplast and thylakoid and endoplasmic reticulum localizations also being reported. The existence of plastid-specific MCF proteins is suggestive that the evolution of these proteins occurred after the separation of the green lineage. That said, plant-specific MCF proteins are not all plastid-localized, with members also situated at the endoplasmic reticulum and plasma membrane. While by no means yet comprehensive, the in vivo function of a wide range of these transporters is carried out here, and we discuss the employment of genetic variants of the MCF as a means to provide insight into their in vivo function complementary to that obtained from studies following their reconstitution into liposomes.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Plantas/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Coenzima A/metabolismo , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Desacoplamento Mitocondrial/genética , Proteínas de Desacoplamento Mitocondrial/metabolismo , Modelos Biológicos , NAD/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Plantas/genética
11.
Fish Physiol Biochem ; 46(5): 1795-1807, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32514852

RESUMO

This study was conducted to evaluate the effects of different dipeptides (lysine-leucine, lysine-glycine, and leucine-glycine) and free amino acids (lysine and leucine) on the growth, gene expression of intestinal peptide and amino acid transporters, and serum free amino acid concentrations in turbot. Fish (11.98 ± 0.03 g) were fed four experimental diets supplementing with crystalline amino acids (CAA), lysine-leucine (Lys-Leu), lysine-glycine (Lys-Gly), and leucine-glycine (Gly-Leu). Fish protein hydrolysate (FPH) containing a mixture of free amino acids and small peptides was designed as a positive control diet. There was no significant difference in the growth and feed utilization among three dipeptide diets (Lys-Leu, Lys-Gly, and Gly-Leu). Compared with the CAA group, feed efficiency ratio was significantly higher in the Lys-Leu and Lys-Gly groups, and protein efficiency ratio was significantly higher in the Lys-Leu group. For peptide transporter, oligopeptide transporter 1 (PepT1) mRNA level was not affected by dietary treatments. For amino acid transporters, lower expression of B0 neutral amino acid transporter 1 (B0AT1) and proton-coupled amino acid transporter 1 (PAT1) were observed in fish fed the dipeptide and FPH diets compared with the CAA diet. In conclusion, juvenile turbot fed Lys-Leu, Gly-Leu, and Lys-Gly had a similar growth performance, whereas lysine and leucine in the Lys-Leu form can be utilized more efficiently for feed utilization than those in free amino acid from. In addition, compared to free amino acids, dipeptides and fish protein hydrolysate in diets may down-regulate the expression of amino acid transporters but did not affect the expression of PepT1.


Assuntos
Sistemas de Transporte de Aminoácidos , Peixes , Leucina , Lisina , Animais , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Dieta/veterinária , Suplementos Nutricionais , Peixes/crescimento & desenvolvimento , Regulação da Expressão Gênica/efeitos dos fármacos , Leucina/administração & dosagem , Leucina/farmacologia , Lisina/administração & dosagem , Lisina/farmacologia
12.
Genomics ; 112(4): 2866-2874, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32276039

RESUMO

Amino acid permeases (AAPs) are involved in transporting a broad spectrum of amino acids and regulating physiological processes in plants. In this study, 19 AAP genes were identified from the tea plants genome database and named CsAAP1-19. Based on phylogenetic analysis, the CsAAP genes were classified into three groups, having significantly different structures and conserved motifs. In addition, an expression analysis revealed that most of CsAAP genes were specifically expressed in different tissues, especially CsAAP19 was expressed only in root. These genes also were significantly expressed in the Baiye 1 and Huangjinya cultivars. Nitrogen treatments indicated that the CsAAPs were obviously expressed in root. CsAAP2, -6, -12, -13 and - 16 were significantly expressed at 6 d after the glutamate treatment, while the expression trend at 24 h after contained the ammonium. These results improve our understanding of the CsAAP genes and their functions in nitrogen utilization in tea plants.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Camellia sinensis/enzimologia , Proteínas de Plantas/genética , Motivos de Aminoácidos , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/classificação , Sistemas de Transporte de Aminoácidos/metabolismo , Camellia sinensis/química , Camellia sinensis/genética , Expressão Gênica , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Alinhamento de Sequência
13.
J Food Biochem ; 44(5): e13167, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32155674

RESUMO

This study evaluated the effects of spermine supplementation on the digestion, transport, and metabolism of nutrients in the jejuna of piglets. Of the 80 piglets examined, 40 received 0.4 mmol/kg body weight spermine, and the other half were randomly distributed such that the restricted nutrient intake supplemented with the saline solution for 7 hr and 3, 6, or 9 days in pairs. Spermine supplementation increased the lipase and trypsin activities (p < .05), and spermine increased the mRNA levels of maltase, sucrase, and aminopeptidase N (APN) but decreased the lactase gene expression (p < .05). Moreover, spermine increased the mRNA expression levels of amino acid transporters (p < .05). Spermine increased the jejunum glycerolphosphocholine, lipid, and taurine levels and decreased the choline and amino acids levels (p < .05). In summary, spermine can promote the digestion, transport, and metabolism of nutrients in piglets. PRACTICAL APPLICATIONS: Meat, fish, dairy products, and fruits contain polyamines (i.e., spermine, spermidine, and putrescine). Spermine plays an important role in the cell proliferation, growth, and differentiation, and spermine supplementation can improve the growth of broilers, growth performance of early weaning piglets, and intestinal maturation. The results of this study suggest that spermine can improve the digestion, transport, and metabolism of nutrients in piglets.


Assuntos
Galinhas , Espermina , Sistemas de Transporte de Aminoácidos/genética , Animais , Intestinos , Suínos , Desmame
14.
Plant Signal Behav ; 15(3): 1728109, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32067561

RESUMO

Nitrogen in soil directly influences the production and quality of tea. However, high nitrogen application in tea plantation leads to soil acidification and environmental pollution. Studies in model plants showed that plasma membrane localized amino acid transporter can regulate the distribution of amino acids to enhance nitrogen use efficiency. Our recent study identified six CsAAPs as transporters for theanine, a unique and most abundant non-proteinaceous amino acid in tea plant. In this work, we found these theanine transporters can also transport Glutamine, Glutamate, aspartate, alanine and γ-aminobutyric acid. Tissue-specific expression analyses showed that CsAAP1, CsAAP5 and CsAAP6 mainly expressed in leaves, CsAAP8 in root, CsAAP4 and CsAAP2 in stem. Furthermore, the expression of these CsAAPs was induced by nitrogen deficiency in a tissue-specific manner. Subcellular localization analyses showed that CsAAP1, CsAAP2 and CsAAP6 location were in the plasma membrane and endoplasmic reticulum. Taken together, these results suggested theanine transporters are involved in nitrogen deficiency response probably by mediating amino acid transport from roots to new shoots and from source to sink tissues in tea plants.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Camellia sinensis/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Ácido Glutâmico/metabolismo , Proteínas de Plantas/genética
15.
J Anim Physiol Anim Nutr (Berl) ; 104(1): 300-309, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31674084

RESUMO

Excessive protein levels in diets result in incomplete digestion of nitrogenous nutrients that are excreted from the body, causing environment pollution. Alpha-ketoglutarate (AKG) has been reported to decrease dietary protein levels, promote intestinal health in piglets and reduce environmental pollution. However, the underlying mechanisms of AKG are largely unknown. The objective of this study was to determine the effects of low-protein diet supplementation of AKG on the growth performance, nitrogen metabolism, relative expression of amino acid transporter genes and mTOR signalling pathway of skeletal muscle in piglets. Forty-eight piglets with an initial weight of 11.53 ± 0.04 kg were randomly divided into four groups. Each group had four replicates, and each replicate had three pigs. A low-protein (LP) diet (crude protein was 14.96%) served as the control without AKG, while 0.5%, 1.0% and 1.5% AKG were added to the LP diet for the other experimental groups. The trial period lasted for 28 days. Compared with the LP group, the LP + 1.0%A and LP + 1.5%A groups increased the growth performance (p < .05);increased the mRNA levels of amino acid transporters in the duodenum, anterior jejunum and posterior jejunum (p < .05); and reduced faecal nitrogen and urine nitrogen emissions (p < .05). They also showed greater mRNA levels and phosphorylated protein levels for S6 kinase beta (S6K) (p < .05), mammalian target of rapamycin (mTOR) (p < .05) and 4E-binding protein 1 (4EBP1) (p < .05) in skeletal muscle. An LP diet supplemented with AKG activated the mTOR signalling and promoted the ability of the small intestine to absorb protein, thereby increasing protein deposition. Taken together, an LP diet supplemented with AKG provides a theoretical basis for the promotion and application of AKG in piglet production.


Assuntos
Dieta com Restrição de Proteínas/veterinária , Ácidos Cetoglutáricos/farmacologia , Nitrogênio/metabolismo , Suínos/crescimento & desenvolvimento , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Suplementos Nutricionais , Regulação da Expressão Gênica/efeitos dos fármacos , Ácidos Cetoglutáricos/administração & dosagem , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/genética
16.
J Sci Food Agric ; 100(4): 1718-1725, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31821574

RESUMO

BACKGROUND: l-Theanine has multiple beneficial biological activities. However, there is little information about the use of l-theanine in broiler production. Therefore, this study investigated the effect of l-theanine on growth performance, intestinal development and health, and the mRNA levels of intestinal peptide and amino acid (AA) transporters of broilers. RESULTS: Body weight and average daily gain were increased by l-theanine, whereas feed to gain ratio was decreased (quadratic, P < 0.05). Notably, the relative weight of duodenum, jejunum and ileum, villus height, villus height to crypt depth ratio, the jejunal activities of glutathione peroxidase, total antioxidant capacity, catalase and total superoxide dismutase were increased linearly and/or quadratically by l-theanine (P < 0.05), whereas crypt depth, serum d-lactic acid, and jejunal protein carbonyls and malondialdehyde content were decreased linearly and/or quadratically (P < 0.05). Moreover, l-theanine enhanced the jejunal mRNA levels of occludin, claudin-1, E-cadherin, zona occludens-1, di- and tripeptide transporter, excitatory AA transporter 3, Na+ -independent cationic AA transporter 1, Na+ -independent cationic and zwitterionic AA transporter, Na+ - and Cl- -dependent neutral and cationic AA transporter, Na+ -independent cationic and Na+ -dependent neutral AA transporter (y+LAT) 1, y+LAT2, Na+ -independent branched-chain and aromatic AA transporter, and heavy chain corresponding to the b°,+ transport system (linear and/or quadratic, P < 0.05). CONCLUSIONS: l-Theanine beneficially affected the growth performance of broilers by improving intestinal development and health, and the intestinal mRNA levels of AA and peptide transporters. Therefore, l-theanine has the potential to be a promising feed additive for broilers. © 2020 Society of Chemical Industry.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Glutamatos/metabolismo , Intestinos/crescimento & desenvolvimento , Proteínas de Membrana Transportadoras/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Ração Animal/análise , Animais , Catalase/genética , Catalase/metabolismo , Galinhas/genética , Suplementos Nutricionais/análise , Mucosa Intestinal/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
17.
PLoS One ; 14(6): e0218806, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31233570

RESUMO

In the course of recent comparative genomic studies conducted on nervous systems across the phylogeny, current thinking is leaning in favor of more heterogeneity among nervous systems than what was initially expected. The isolation and characterization of molecular components that constitute the cnidarian neuron is not only of interest to the physiologist but also, on a larger scale, to those who study the evolution of nervous systems. Understanding the function of those ancient neurons involves the identification of neurotransmitters and their precursors, the description of nutrients used by neurons for metabolic purposes and the identification of integral membrane proteins that bind to those compounds. Using a molecular cloning strategy targeting membrane proteins that are known to be present in all forms of life, we isolated a member of the solute carrier family 6 from the scyphozoan jellyfish Cyanea capillata. The phylogenetic analysis suggested that the new transporter sequence belongs to an ancestral group of the nutrient amino acid transporter subfamily and is part of a cluster of cnidarian sequences which may translocate the same substrate. We found that the jellyfish transporter is expressed in neurons of the motor nerve net of the animal. To this end, we established an in situ hybridization protocol for the tissues of C. capillata and developed a specific antibody to the jellyfish transporter. Finally, we showed that the gene that codes for the jellyfish transporter also expresses a long non-coding RNA. We hope that this research will contribute to studies that seek to understand what constitutes a neuron in species that belong to an ancient phylum.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Cifozoários/metabolismo , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos/genética , Animais , Clonagem Molecular , Evolução Molecular , Feminino , Células HEK293 , Humanos , Hibridização In Situ , Neurônios Motores/metabolismo , Rede Nervosa/metabolismo , Oócitos/metabolismo , Filogenia , RNA Longo não Codificante/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cifozoários/classificação , Cifozoários/genética , Homologia de Sequência de Aminoácidos , Xenopus
18.
Amino Acids ; 51(7): 1081-1092, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31175485

RESUMO

Sixty Duroc × Large White × Landrace pigs with an average initial body weight (BW) of 77.1 ± 1.3 kg were selected to investigate the effects of dietary supplementation with arginine (Arg) and/or glutamic acid (Glu) on free amino acid (FAA) profiles, expression of AA transporters, and growth-related genes in skeletal muscle. The animals were randomly assigned to one of five treatment groups (basic diet, iso-nitrogenous, Arg, Glu, and Arg + Glu groups). The results showed that plasma Glu concentration was lowest in the Arg + Glu group and highest in the Glu group (P < 0.05). In the longissimus dorsi (LD) muscle, the concentrations of histidine, Arg, and taurine in the Arg + Glu group were higher, and the concentrations of 3-methylhistidine was lower, than in the basic diet group (P < 0.05). The mRNA levels of ASC amino acid transporter-2 (ASCT2), L-type AA transporter 1, and sodium-coupled neutral amino acid transporter 2 in the LD muscle, as well as the mRNA levels of ASCT2 and proton-assisted amino acid transporter in the biceps femoris (BF) muscle, were higher in the Arg + Glu group compared to the basic diet group (P < 0.05). The mRNA levels of the muscle-specific RING finger-1 and muscle atrophy F-box genes in the LD muscle were downregulated in the Glu and Arg + Glu groups compared to the basic diet group (P < 0.05). Collectively, these findings suggest that dietary supplementation with both Arg and Glu increases intramuscular FAA concentrations and decreases the mRNA levels of genes involved in protein degradation in skeletal muscle.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Arginina/farmacologia , Ácido Glutâmico/farmacologia , Músculo Esquelético/metabolismo , Suínos/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Animais , Arginina/administração & dosagem , Dieta , Suplementos Nutricionais , Ácido Glutâmico/administração & dosagem , RNA Mensageiro/metabolismo , Suínos/genética , Suínos/crescimento & desenvolvimento
19.
Poult Sci ; 98(10): 4994-5004, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31135902

RESUMO

An experiment was conducted to investigate the effect of manganese (Mn) source on Mn absorption and expressions of Mn, amino acid, and peptide transporters in the small intestine of broilers. A total of 320 Mn-deficient 15-day-old Arbor Acres male broilers were randomly assigned to 5 treatments with 8 replicates/treatment and 8 chicks/replicate and fed an Mn-unsupplemented control diet or the control diet supplemented with 110 mg Mn/kg from either MnSO4, or 1 of 3 organic Mn chelates with weak (OW), moderate (OM), or strong (OS) chelation strength for 14 D. The plasma Mn contents were higher (P < 0.03) in supplemental Mn groups than in the control group, in OS group than in OM group, and in OM group than in OW and MnSO4 groups on day 28. Broilers fed diets supplemented with Mn had higher (P < 0.02) duodenal divalent metal transporter 1 (DMT1) and ferroportin 1 (FPN1) mRNA levels and FPN1 protein level on both days 21 and 28 than those fed the control diet. Duodenal DMT1 mRNA and protein levels were higher (P < 0.05) in OM and OS groups than in OW and MnSO4 groups on day 28. The mRNA levels of amino acid transporters [b0, +-type amino acid transporter 1 (B0AT1) and excitatory amino acid transporter 3 (EAAT3)] were higher (P < 0.0005), and peptide transporter 1 was lower (P < 0.04) in the ileum than in the duodenum and jejunum; however, Mn source did not affect (P > 0.05) mRNA levels of amino acid and peptide transporters in the small intestine of broilers. The results from the present study indicate that both DMT1 and FPN1 facilitated Mn absorption, however, the amino acid and peptide transporters might not be involved in the transport of the organic Mn chelates; organic Mn chelates with moderate and strong chelation strength, especially strong chelation strength, showed higher Mn absorption possibly due to enhanced DMT1 expression in the duodenum of broilers.


Assuntos
Proteínas Aviárias/genética , Galinhas/genética , Galinhas/metabolismo , Intestino Delgado/metabolismo , Manganês/metabolismo , Absorção Fisiológica , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Ração Animal/análise , Animais , Proteínas Aviárias/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Masculino , Manganês/administração & dosagem , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Distribuição Aleatória
20.
J Anim Sci ; 96(12): 5198-5208, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30256967

RESUMO

The objective of this study was to determine the effect of organic and inorganic Fe sources on the Fe absorption and gene expression of Fe and amino acid transporters in the ligated jejunal and ileal segments of broilers. The in situ ligated jejunal and ileal loops from Fe-deficient broiler chicks (28-d-old) were perfused with Fe solutions containing 0, 3.58, or 7.16 mM Fe from one of the following Fe sources: Fe sulfate (FeSO4∙7H2O), the mixtures of FeSO4∙7H2O with either Met or Gly, Fe-Gly chelate, or three Fe-amino acid or protein chelates with weak, moderate or extremely strong chelation strengths (Fe-Met W, Fe-Pro M, or Fe-Pro ES), respectively, for up to 30 min. Iron absorption was increased (P < 0.0001) as the perfused Fe concentrations increased, and no differences (P > 0.07) were detected in the Fe absorption between the jejunum and ileum. Regardless of intestinal segments, Fe absorption was higher (P < 0.006) for Fe-Pro ES and Fe-Pro M than for FeSO4·7H2O, and for Fe-Pro ES than for Fe-Met W. Glycine but not Met supplementation increased (P < 0.03) the absorption of Fe as FeSO4. Regardless of Fe source, Fe addition inhibited (P < 0.05) the mRNA expressions of divalent metal transporter 1 (DMT1) in the jejunum and ileum, but enhanced (P < 0.05) the mRNA expressions of l-type amino transporter 1 (LAT1) and B0-type amino acid transporter 1 (B0AT1) in the jejunum and ileum. No differences (P > 0.05) among different Fe sources were observed in the mRNA expression levels of Fe and amino acid transporters in both the jejunum and the ileum. The mRNA expression levels of DMT1, ferroportin 1, B0AT1, or y+LAT1 were higher (P < 0.0001), but those of excitatory amino acid transporter 3, LAT1, or y+l-type amino transporter 2 were lower (P < 0.04) in the jejunum than in the ileum. The supplementation of inorganic or organic Fe had no effect (P > 0.14) on the protein expression levels of DMT1 and FPN1 in the jejunum and ileum. The above results indicate that organic Fe sources with stronger chelation strengths showed higher Fe absorption in the jejunum and ileum of broiler chicks. Glycine was more effective in facilitating Fe absorption than Met as a ligand. The mRNA expressions of Fe and amino acid transporters in the jejunum were different from those in the ileum. The DMT1, LAT1, and B0AT1 might be involved in the Fe absorption in the jejunum or ileum of broilers.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Proteínas de Transporte de Cátions/genética , Galinhas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Ferro/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Proteínas de Transporte de Cátions/metabolismo , Galinhas/genética , Dieta/veterinária , Íleo/metabolismo , Absorção Intestinal/efeitos dos fármacos , Ferro/farmacologia , Jejuno/metabolismo , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA